Campylobacter jejuni Serine Protease HtrA Induces Paracellular Transmigration of Microbiota across Polarized Intestinal Epithelial Cells

Author:

Sharafutdinov IrshadORCID,Tegtmeyer Nicole,Müsken MathiasORCID,Backert SteffenORCID

Abstract

Campylobacter jejuni represents an eminent zoonotic germ responsible for foodborne infections causing campylobacteriosis. In addition, infections with C. jejuni constitute a risk factor for the occurrence of inflammatory bowel disease (IBD). In the latter case, patients show inflammatory reactions not only against C. jejuni, but also against the non-infectious microbiota. However, the involved mechanisms and molecular basis are still largely unclear. We recently reported that C. jejuni breaches the intestinal epithelial barrier by secretion of serine protease HtrA (high temperature requirement A), which cleaves several major tight and adherens junction proteins. In the present study, we aimed to study if HtrA-expressing C. jejuni may also trigger the transepithelial migration of non-pathogenic gastrointestinal microbiota. Using confocal immunofluorescence and scanning electron microscopy, we demonstrate that C. jejuni wild-type (wt) as well as the isogenic ∆htrA mutant bind to the surface of polarized intestinal Caco-2 epithelial cells, but do not invade them at the apical side. Instead, C. jejuni wt, but not ∆htrA mutant, disrupt the cellular junctions and transmigrate using the paracellular route between neighboring cells. Using transwell filter systems, we then co-incubated the cells with C. jejuni and non-invasive microbiota strains, either Escherichia coli or Lactococcus lactis. Interestingly, C. jejuni wt, but not ∆htrA mutant, induced the efficient transmigration of these microbiota bacteria into the basal compartment. Thus, infection of the intestinal epithelium with C. jejuni causes local opening of cellular junctions and paracellular translocation in an HtrA-dependent manner, which paves the way for transmigration of microbiota that is otherwise non-invasive. Taken together, these findings may have impacts on various Campylobacter-associated diseases such as IBD, which are discussed here.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3