The Adaptive Bilateral Control of Underwater Manipulator Teleoperation System with Uncertain Parameters and External Disturbance

Author:

Zhang Jianjun12,Xia Manjiang1,Li Shasha1,Liu Zhiqiang12,Yang Jinxian12

Affiliation:

1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454099, China

2. Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment, Henan Polytechnic University, Jiaozuo 454099, China

Abstract

A novel self-adaptive bilateral control strategy is introduced to manage uncertainties inherent in the teleoperation of an underwater manipulator system effectively. In response to uncertainties stemming from both the mathematical model and external disturbances, our approach offers innovative solutions. Firstly, to address uncertainties in the master model parameters, we propose a reference adaptive impedance control based on a nominal model. This control strategy dynamically adjusts the reference position of the desired model, leveraging adaptive control laws to compensate for model uncertainties. Additionally, to tackle uncertainties specific to the slave manipulator, we employ adaptive compensation using radial basis function (RBF) networks. Our unique combination of sliding mode variable structure controllers and robust adaptive controllers aims to mitigate approximation errors, ensuring precise tracking of the master manipulator’s position by the slave manipulator. By employing Lyapunov function analysis, we demonstrate the system’s superior tracking performance and global stability, with assured asymptotic convergence for force–position tracking. Through comprehensive experimentation, our results showcase the exceptional force–position tracking capabilities of the overall control system, even under challenging conditions of model uncertainties and external disturbances. Moreover, our system exhibits remarkable stability, reliability, and robustness, underscoring the effectiveness of our proposed adaptive control approach.

Funder

Key Scientific Research Projects of University in Henan Province

The Basic Research Business Fund Special Project of Henan Polytechnic University

Natural Science Foundation of Henan

Henan Province Scientific and Technological Project of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3