A Robot for Removing Hydrate and Paraffin Plugs in Offshore Flexible Lines – Development and Experimental Trials

Author:

Santos Hugo1,Perondi Eduardo2,Wentz André3,Silva Anselmo3,Barone Dante2,Basso Eduardo2,Reis Ney1,Galassi Maurício1,Pinto Hardy1,Castro Bruno1,Ferreira André1,Ferreira Lincoln1,Krettli Igor1

Affiliation:

1. Petrobras

2. UFRGS

3. Senai-SC

Abstract

Abstract Methane Hydrates and Paraffin Plugs in flexible lines are concerns in offshore production. They may stop wells for months, causing high financial losses. Sometimes, operators use depressurization techniques for hydrate removal. Other strategy is using coiled tubing or a similar unit in order to perform local heating or solvent injection. However, frequently these strategies are not successful. In those cases, a rig may perform the operation or the line may be lost. This project developed a robotic system in order to perform a controlled local heating and remove obstructions. The robotic system developed is able to access the line from the production platform. It uses a self-locking system in order to exert high traction forces. An umbilical with neutral buoyancy and low friction coefficient allows significant drag reduction. It allows moving upwards and in pipes with a large number of curves. Coiled tubing and similar units cannot do that. Carbon fiber vessels and compact circuits give flexibility to move inside 4-inch flexible pipes. A novel theoretical model allows the cable traction calculation using an evolution of the Euler-Eytelwein equation. Experimental tests validated this model using curved pipes, both empty and filled with a fluid and using different loads. Experimental tests also validated the external layer traction resistance. Furthermore, the carbon fiber vessels were pressure tested, indicating a collapse resistance of more than 550 bar (8.000 psi). In addition, exhaustive tests of the onboard electronics and of the surface control system guarantee the communication reliability. Additionally, the 25 kN (5.6 kip) traction system was modeled theoretically considering the self-locking system, the contact with the wall and a diameter range. Four prototypes allowed to: a) compare hydraulic and electric drive systems, b) validate the self-locking mechanism up to its limit, c) analyze the hydraulic system for leg opening and translation and d) prove the traction capacity. Finally, a theoretical model for the local heating system was developed. The system experimental validation on a cooled environment demonstrated its capacity of increasing temperature. Furthermore, it allows the obstruction removal in a controlled manner, avoiding damage to the polymeric layer of the flexible line.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3