Development of a Control System for Underwater Vehicles with Multilink Manipulators Performing Contact Manipulation Operations

Author:

Konoplin Alexander1,Krasavin Nikita1ORCID,Yurmanov Alexander1,Piatavin Pavel1,Vasilenko Roman1,Panchuk Maxim1

Affiliation:

1. Federal State Budgetary Institution of Science M. D. Ageev Institute of Marine Technology Problems, Far East Branch, Russian Academy of Sciences (IMTP FEB RAS), 690091 Vladivostok, Russia

Abstract

This article proposes a new method for the synthesis of autonomous underwater vehicles (AUVs) with a multilink manipulators control system, which provides for the automatic execution of contact manipulation operations by AUVs in stabilized hovering mode near or above target objects. To achieve the desired magnitude of the working tool’s force effect on the object surface, the force vector exerted by this tool is calculated. Next, control signals providing additional movements of the manipulator’s tool in the direction of the desired force vector are generated. Simultaneously, based on the calculated effects from the manipulator on the AUV, the thrusts of the latter’s thrusters create the necessary pull at the manipulator’s attachment point, which allows it to exert the desired force effects on the object surface. To compensate for the inevitable AUV stabilization system errors, leading to the tool’s deviations from the trajectory, the latter is automatically corrected, taking into account the actual AUV deviations. As a result, contact manipulation operations are performed while maintaining the continuous contact of the tool with the object, even with slight displacements of the AUV from the stabilization point. The operability and efficiency of the synthesized system are confirmed by the results of numerical modeling, with the use of basin experimental data and visualization.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3