Abstract
In recent integrated circuit (IC) packages, the structure of the interconnect is highly complex, and the effect of high-frequency parasitics is significant. These factors increase the number and level of design variables and extend the analysis frequency range to tens of gigahertz. As a result of the high dimensions of the design space, it is difficult to reduce the design gap between the current design approach and the physical limits of the practical IC-package interconnect. In this paper, we present an efficient approach for designing and analyzing the electrical characteristics of the high-speed interconnect in IC packages. The proposed approach is developed using a hybrid method involving the design of experiments, the domain decomposition method, and the finite-element method. We present a procedure to identify critical design variables for the IC-package interconnect, and we derive a method to recombine the impedance parameters of a segmented interconnect. The proposed hybrid method is verified by comparing its characteristic impedance (Zo) with the Zo value from a full-wave simulation of a complete interconnect. We demonstrate that the proposed hybrid method significantly reduces the design space of the IC-package interconnect so that we can efficiently and rapidly obtain the optimized solution, thereby improving the system performance.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献