Electromechanical Coupling Parameter Identification for Flexible Conductor Wire Interconnection Considering Interaction Effect in Microwave Circuits

Author:

Tian JunORCID,Wang CongsiORCID,Liu Shaoyi,Xue Song,Zhang Le,Liu Jing,Wang Zhihai,Yu Kunpeng,Li Ruining

Abstract

With the huge requirement of high frequency, multi-function and high reliability, the quality of microwave circuit interconnection has become an important factor that significantly affects the improvement of microwave electronic system performance. This paper has presented an identification method for flexible conductor wire interconnection (FCWI) electromechanical coupling parameters in microwave circuits with the consideration of their interaction effect. First, a parametric characterization cascade function has been proposed to design the FCWI, and consequently, a three-dimensional electromagnetic structure model of FCWI has been developed and verified. In order to identify the electromechanical coupling parameters of the flexible interconnection considering the interaction effect effectively, this paper has used the range multi-objective function to select the optimal level of the configuration parameter of the flexible interconnection that affects the signal transmission loss. Based on the variance analysis and range analysis of the experimental results, the comprehensive judgment criterion of electromechanical coupling parameters of flexible interconnection can be defined, and therefore, the calculation of electromechanical coupling degree can be derived and the electromechanical coupling property identification of flexible interconnection has been obtained. An example has been used afterwards to verify the accuracy of the proposed method. The method proposed in this paper can be a promising tool for microwave circuit comprehensive design and the optimization of its interconnection, considering both mechanical reliability and electrical performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Youth Innovation Team of Shaanxi Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3