Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces

Author:

Malakoutian Mohamadali1,Woo Kelly1,Rich Dennis1,Mandia Ramandeep2,Zheng Xiang3,Kasperovich Anna1,Saraswat Devansh1,Soman Rohith1,Jo Youhwan4,Pfeifer Thomas5,Hwang Taesoon4,Aller Henry6,Kim Jeongkyu1,Lyu Junrui1,Mabrey Janelle Keionna1,Rodriguez Thomas Andres1,Pomeroy James3,Hopkins Patrick E.5,Graham Samuel6,Smith David J.2,Mitra Subhasish1,Cho Kyeongjae4,Kuball Martin3,Chowdhury Srabanti1ORCID

Affiliation:

1. Stanford University 450 Jane Stanford Way Stanford CA 94305 USA

2. Arizona State University 1151 S Forest Ave Tempe AZ 85287 USA

3. University of Bristol Tyndall Avenue Bristol BS8 1TL UK

4. University of Texas at Dallas 800 W. Campbell Road Richardson TX 75080 USA

5. University of Virginia 351 McCormick Road Charlottesville VA 22904 USA

6. University of Maryland College Park MD 20742 USA

Abstract

AbstractAdvancing Silicon (Si) technology beyond Moore's law through 3D architectures requires highly efficient heat management methods compatible with foundry processes. While continued increases in transistor density can be achieved through 3D architectures, self‐heating in the upper tiers degrades the performance. Self‐heating is a critical problem for high‐power, high‐frequency, wide bandgap, and ultra‐wide bandgap devices as well. Diamond, known for its exceptional thermal conductivity, offers a viable solution in both these cases. Since thermal boundary resistance (between the channel/junction and diamond plays a crucial role in overall thermal resistance, this study investigates various dielectrics for interface engineering, such as Silicon dioxide (SiO2), amorphous‐ Silicon Carbide (a‐SiC), and Silicon Nitride (SiNx), to make a phonon bridge at gallium nitride (GaN)‐diamond and Si‐diamond interfaces. The a‐SiC interlayer reduces diamond/GaN (<5 m2K per GW) and diamond/Si (<2 m2K per GW) thermal boundary resistances by linking low‐ and high‐frequency phonons, boosting phonon transport through the interface. Engineered interfaces enhance heat spreading from the channel/junction and rule out premature failure.

Funder

Office of Science

Defense Sciences Office, DARPA

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3