Multibit, Lead‐Free Cs2SnI6 Resistive Random Access Memory with Self‐Compliance for Improved Accuracy in Binary Neural Network Application

Author:

Kumar Ajit1,Krishnaiah Mokurala1,Park Jinwoo2,Mishra Dhananjay1,Dash Bidyashakti1,Jo Hyeon‐Bin1,Lee Geun1,Youn Sangwook2,Kim Hyungjin3ORCID,Jin Sung Hun1ORCID

Affiliation:

1. Department of Electronic Engineering, and with the I‐Nanofab Center & Convergence Research Center for Insect Vectors Incheon National University Incheon 406–772 Republic of Korea

2. Department of Electrical and Computer Engineering Inha University Incheon 22212 Republic of Korea

3. Division of Materials Science and Engineering Hanyang University Seoul 04763 Republic of Korea

Abstract

AbstractIn the realm of neuromorphic computing, integrating Binary Neural Networks (BNN) with non‐volatile memory based on emerging materials can be a promising avenue for introducing novel functionalities. This study underscores the viability of lead‐free, air‐stable Cs2SnI6 (CSI) based resistive random access memory (RRAM) devices as synaptic weights in neuromorphic architectures, specifically for BNNs applications. Herein, hydrothermally synthesized CSI perovskites are explored as a resistive layer in RRAM devices either on the rigid or flexible substrate, highlighting reproducible multibit switching with self‐compliance, low‐ resistance‐state (LRS) variations, a decent On/Off ratio(or retention) of ≈103(or 104 s), and endurance exceeding 300 cycles. Moreover, a comprehensive evaluation with the 32 × 32 × 3 RGB CIFAR‐10 dataset reveals that binary convolutional neural networks (BCNN) trained solely on binary weight values can achieve competitive rates of accuracy comparable to those of their analog weight counterparts. These findings highlight the dominance of the LRS for CSI RRAM with self‐compliance in a weighted configuration and minimal influence of the high resistance state despite substantial fluctuations for flexible CSI RRAM under varying bending radii. With its unique electrical switching capabilities, the CSI RRAM is highly anticipated to emerge as a promising candidate for embedded AI systems, especially in IoT devices and wearables.

Funder

National Research Foundation of Korea

Ministry of Science, ICT and Future Planning

Iran Telecommunication Research Center

Ministry of Education

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3