Spin‐Coating Deposited SnS2 Thin Film‐Based Memristor for Emulating Synapses

Author:

Feng Jiang1,Fan Jiaming1,Zhang Zijian1,Gao Yu1,Xue Song1,Cai Gangri1ORCID,Zhao Jin Shi1

Affiliation:

1. Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Department of Applied Chemistry Tianjin Key Laboratory of Film Electronic & Communication Devices, School of Electrical and Electronic Engineering Tianjin University of Technology No. 391, Binshui Xidao, Xiqing District Tianjin 300384 P. R. China

Abstract

Abstract2D materials have garnered significant attention owing to their substantial potential across various applications, including thin‐film electronics, optoelectronics, and sensor devices, particularly, the synthesis and deposition methods of the 2D materials are crucial. In this study, thin films of tin disulfide (SnS2), a layer‐structured metal dichalcogenide, are deposited on an indium tin oxide (ITO) glass substrate through a spin‐coating process to prepare a sandwich‐structured resistive switching (RS) device (ITO/SnS2/ITO) by following magnetron sputtering of ITO as top electrode. Notably, the solution‐phased spin‐coating deposition method provides an efficient approach to enhance device performance through ion doping. By incorporating calcium ions (Ca2+), the devices exhibit the potential to achieve outstanding resistive switching performance and synapse functionality. With a DC sweep, an on/off resistance ratio exceeding 100 can be sustained without degradation for up to 5000 cycles. Furthermore, the devices exhibit diverse synaptic functions, including short‐term and long‐term plasticity (STP, LTP) in both potentiation and depression processes, spike‐timing‐dependent plasticity (STDP), and paired‐pulse facilitation (PPF). The transition in electrical resistance and synaptic function can be attributed to the migration of doped Ca2+ along the grain boundary and interlayer space of layer‐structured SnS2 films.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipality

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3