Affiliation:
1. Department of Materials Science and Engineering National Taiwan University Taipei 10617 Taiwan
2. Research Center for Applied Sciences Academia Sinica Taipei 11529 Taiwan
Abstract
AbstractAtomic layer engineering is investigated to tailor the morphotropic phase boundary (MPB) between antiferroelectric, ferroelectric, and paraelectric phases. By increasing the HfO2 seeding layer with only 2 monolayers, the overlying ZrO2 layer experiences the dramatic phase transition across the MPB. Conspicuous ferroelectric properties including record‐high remanent polarization (2Pr ≈ 60 µC cm−2), wake‐up‐free operation, and high compatibility with advanced semiconductor technology nodes, are achieved in the sub‐6 nm thin film. The prominent antiferroelectric to ferroelectric phase transformation is ascribed to the in‐plane tensile stress introduced into ZrO2 by the HfO2 seeding layer. Based on the high‐resolution and high‐contrast images of surface grains extracted precisely by helium ion microscopy, the evolution of the MPB between tetragonal, orthorhombic, and monoclinic phases with grain size is demonstrated for the first time. The result indicates that a decrease in the average grain size drives the crystallization from the tetragonal to polar orthorhombic phases.
Funder
National Science and Technology Council
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献