Low‐Temperature Nanosecond Laser Process of HZO‐IGZO FeFETs toward Monolithic 3D System on Chip Integration

Author:

Kim Dongsu1ORCID,Jeong Heejae1ORCID,Pyo Goeun1ORCID,Heo Su Jin12ORCID,Baik Seunghun1ORCID,Kim Seonhyoung3ORCID,Choi Hong Soo3ORCID,Kwon Hyuk‐Jun1ORCID,Jang Jae Eun1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science Daegu Gyeongbuk Institute of Science & Technology (DGIST) Daegu 42988 South Korea

2. Department of Engineering Institute for Manufacturing University of Cambridge Cambridge CB3 0FS United Kingdom

3. Department of Robotics and Mechatronics Engineering Daegu Gyeongbuk Institute of Science & Technology (DGIST) Daegu 42988 South Korea

Abstract

AbstractFerroelectric field‐effect transistors (FeFETs) are increasingly important for in‐memory computing and monolithic 3D (M3D) integration in system‐on‐chip (SoC) applications. However, the high‐temperature processing required by most ferroelectric memories can lead to thermal damage to the underlying device layers, which poses significant physical limitations for 3D integration processes. To solve this problem, the study proposes using a nanosecond pulsed laser for selective annealing of hafnia‐based FeFETs, enabling precise control of heat penetration depth within thin films. Sufficient thermal energy is delivered to the IGZO oxide channel and HZO ferroelectric gate oxide without causing thermal damage to the bottom layer, which has a low transition temperature (<250 °C). Using optimized laser conditions, a fast response time (<1 µs) and excellent stability (cycle > 106, retention > 106 s) are achieved in the ferroelectric HZO film. The resulting FeFET exhibited a wide memory window (>1.7 V) with a high on/off ratio (>105). In addition, moderate ferroelectric properties (2·Pr of 14.7 µC cm−2) and pattern recognition rate‐based linearity (potentiation: 1.13, depression: 1.6) are obtained. These results demonstrate compatibility in HZO FeFETs by specific laser annealing control and thin‐film layer design for various structures (3D integrated, flexible) with neuromorphic applications.

Funder

Ministry of Science and ICT, South Korea

Samsung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3