High‐Performance Low‐k Poly(dicyclopentadiene) Nanocomposites as Achieved via Reactive Blending with Norbornene‐Functionalized Larger POSS

Author:

Wang Jian1,Lin Xiong1,Zhou Dai‐Lin1,Fu Si‐Rui1,Zhang Qin1,Bai Hongwei1,Han Di1,Fu Qiang1ORCID

Affiliation:

1. College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China

Abstract

AbstractLow dielectric constant (k) polymers with excellent comprehensive properties are useful materials in the microelectronics industry as matrix resins or encapsulation layers. With the inherent low polarization, high reactivity, good processability, and low cost, poly(dicyclopentadiene) (PDCPD) has received considerable attention as low‐k materials. However, its practical application is limited by the relatively high thermal expansion and k value. Herein, three norbornene‐functionalized polyhedral oligomeric silsesquioxanes (POSSs) with T8, T10, and T12 polyhedral cores are synthesized and employed for enhancing the dielectric and comprehensive properties of PDCPD via reactive blending. The results show that these POSSs have good compatibility with PDCPD matrix and nano‐dispersed POSSs particles could be obtained. As a result, the materials’ properties can be largely enhanced by varying the POSS content and POSS size. Especially, PT12N12‐40 (40 wt% of T12N12) shows the lowest k value (2.1) and coefficient of thermal expansion (63.4 ppm°C−1), highest glass transition temperature (202.5 °C), yield strength (78.0 MPa), and elastic modulus (2.36 GPa), along with excellent hydrophobicity. This study highlights a useful strategy to fabricate high‐performance low‐k polymer nanocomposites by using larger POSS and reactive blending, which provides useful materials for the future microelectronic industry and high frequency communication.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3