Polyhedral Oligomeric Silsesquioxane D3h‐(RSiO1.5)14

Author:

Hunsicker Marc1ORCID,Ankur 1ORCID,Morgenstern Bernd2ORCID,Zimmer Michael1ORCID,Scheschkewitz David1ORCID

Affiliation:

1. Krupp-Chair of General and Inorganic Chemistry Saarland University 66123 Saarbrücken Germany

2. Service Center X-Ray Diffraction Saarland University 66123 Saarbrücken Germany

Abstract

AbstractWhile smaller polyhedral oligomeric silsesquioxanes TnRn (POSS) are readily accessible or even commercially available, unambiguously authenticated larger systems (n>12) have barely been reported. Synthesis and isolation procedures are lengthy, and yields are often very low. Herein, we present the surprisingly straightforward and high‐yielding access to the phenyl‐substituted derivative of a so far only postulated second D3h‐symmetric T14 isomer and with that the largest crystallographically characterized POSS cage with organic substituents. Treatment of the commercially available incompletely condensed T7Ph7(OH)3 silsesquioxane with catalytic amounts of trifluoromethanesulfonic acid results in high yields of the T14Ph14 framework, which is isolated in crystalline form by a simple work‐up. D3h‐T14Ph14 was analyzed by single crystal X‐ray diffraction, multinuclear NMR spectroscopy and thermal analysis. The relative energies of all four theoretically possible T14Ph14 isomers were determined by optimization of the corresponding structure using DFT methods.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3