Design and Development of Efficient SRAM Cell Based on FinFET for Low Power Memory Applications

Author:

Rao M. V. Nageswara1,Hema Mamidipaka2ORCID,Raghutu Ramakrishna3,Nuvvula Ramakrishna S. S.3,Kumar Polamarasetty P.3,Colak Ilhami4,Khan Baseem5ORCID

Affiliation:

1. Department of ECE, GMR Institute of Technology, Rajam, India

2. Department of ECE, JNTU-GV College of Engineering, Vizianagaram, India

3. Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam, India

4. Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Nisantasi University, Istanbul, Turkey

5. Department of Electrical and Computer Engineering, Hawassa University, Hawassa, Ethiopia

Abstract

Stationary random-access memory (SRAM) undergoes an expansion stage, to repel advanced process variation and support ultra-low power operation. Memories occupy more than 80% of the surface in today’s microdevices, and this trend is expected to continue. Metal oxide semiconductor field effect transistor (MOSFET) face a set of difficulties, that results in higher leakage current (Ileakage) at lower strategy collisions. Fin field effect transistor (FinFET) is a highly effective substitute to complementary metal oxide semiconductor (CMOS) under the 45 nm variant due to advanced stability. Memory cells are significant in the large-scale computation system. SRAM is the most commonly used memory type; SRAMs are thought to utilize more than 60% of the chip area. The proposed SRAM cell is developed with FinFETs at 16 nm knot. Power, delay, power delay product (PDP), Ileakage, and stationary noise margin (SNM) are compared with traditional 6T SRAM cells. The designed cell decreases leakage power, current, and read access time. While comparing 6T SRAM and earlier low power SRAM cells, FinFET-based 10T SRAM provides significant SNM with reduced access time. The proposed 10T SRAM based on FinFET provides an 80.80% PDP reduction in write mode and a 50.65% PDP reduction in read mode compared to MOSEFET models. There is an improvement of 22.20% in terms of SNM and 25.53% in terms of Ileakage.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EGFET-Based Noninvasive Glucose Sensor Integrated with Enzyme-Mimicking Bi2O3 Microrods Derived from Bi-BTC Tested in Artificial Sweat;ACS Applied Electronic Materials;2024-07-26

2. Low power and noise‐immune 9 T compute SRAM cell design based on differential power generator and Schmitt‐trigger logics with14 nm FinFET technology;International Journal of Circuit Theory and Applications;2024-06-27

3. Design of SRAM Cell Using FinFET for Low Power Applications;2024 7th International Conference on Devices, Circuits and Systems (ICDCS);2024-04-23

4. Designing power‐efficient SRAM cells with SGFinFETs using LECTOR technique;Software: Practice and Experience;2023-12-04

5. Seepage Power Aware SBVL Based FinFET Design for SRAM Construction;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3