Affiliation:
1. Urals Research Center for Radiation Medicine of the Federal Medical-Biological Agency, Chelyabinsk, Russia
Abstract
Active (red) bone marrow (AM) exposure due to ingested bone-seeking radionuclides can lead to grave medical consequences. For example, a radioactive contamination of the Techa River in the 1950s caused exposure to AM for riverside residents and led to chronic radioactive exposure syndrome in some of them, with higher risk of leukemia. The main sources of the marrow exposure were the bone-seeking beta emitters 89,90Sr. Improving the dosimetry of AM internal exposure is an important step in clarifying the risks of chronic radiation exposure for riverside residents. To evaluate the energy absorbed by AM from incorporated 90Sr it is customary to use computational phantoms where radiation transport can be emulated. A phantom is a representative digital representation of skeletal bone geometry and AM The goal of this work was to develop a computational phantom of a newborn skeleton for dosimetry of AM from incorporated 90Sr. The researchers have used the Stochastic Parametric Skeletal Dosimetry method (SPSD), where hematopoietic sites were modeled as a set of phantoms of simple geometric shape describing individual skeletal bone areas. The AM content in the skeleton as well as the phantom parameters were evaluated on the basis of published measurements of real bones. As a result, a computational phantom of the main skeletal hematopoietic sites was generated for a newborn baby, including 34 phantoms of bone areas. The simulated phantom simulates the bone structure as well as the variability of skeletal parameters within the population and corresponds well to measurements of real bones.
Publisher
Federal Medical Biological Agency
Subject
Marketing,Pharmacy,Health Policy,Pharmaceutical Science,Pharmacology,Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics,Drug Discovery,Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics,Pharmacology,Pharmacology,Toxicology,Pharmacology
Reference68 articles.
1. Degteva MO, Shagina NB, Vorobiova MI, Shishkina EA, Tolstykh EI, Akleyev AV. Contemporary Understanding of Radioactive Contamination of the Techa River in 1949–1956. Radiats Biol Radioecol. 2016; 56 (5): 523–34. English, Russian. PMID: 30703313.
2. Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, Akleyev A. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. Radiat Environ Biophys. 2013; 52 (1): 47–57. DOI: 10.1007/s00411012-0438-5. Epub 2012 Nov 4.
3. Akleev AV. Xronicheskij luchevoj sindrom u zhitelej pribrezhnyx sel reki Techa. Chelyabinsk: Kniga, 2012; 464 s. Russian.
4. Preston DL, Sokolnikov ME, Krestinina LY, Stram DO. Estimates of Radiation Effects on Cancer Risks in the Mayak Worker, Techa River and Atomic Bomb Survivor Studies. Radiat Prot Dosimetry. 2017; 173 (1–3): 26–31. DOI: 10.1093/rpd/ncw316.
5. O'Reilly SE, DeWeese LS, Maynard MR, Rajon DA, Wayson MB, Marshall EL, et al. An 13 image-based skeletal dosimetry model for the ICRP reference adult female-internal electron 14 sources. Phys Med Biol. 2016; 61 (24): 8794–8824. Epub 2016 Nov 29.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献