Computational phantom for a 5-year old child red bone marrow dosimetry due to incorporated beta emitters

Author:

Sharagin PA1,Tolstykh EI1,Shishkina EA1

Affiliation:

1. Urals Research Center for Radiation Medicine of the Federal Medical-Biological Agency, Chelyabinsk, Russia

Abstract

The red bone marrow (RBM) exposure due to bone-seeking radionuclides can lead to grave medical consequences. In particular, the increased risk of leukemia in people exposed due to contamination of the Techa River in 1950s is associated with the RBM exposure due to 89,90Sr. Improvement of the internal RBM dosimetry methods includes the development of computational phantoms that represent 3D models of the skeletal sites. Modeling radiation transport within such phantoms enables estimation of conversion factors from the radionuclide activity in the bone to the RBM dose rate. This paper is an extension study focused on generating a set of computational phantoms representing skeletons of individuals of different ages. The aim was to develop a computational phantom representing a 5-yearold child for internal RBM dosimetry from incorporated beta emitters. The phantoms of the skeletal sites with active hematopoiesis were created using the original Stochastic Parametric Skeletal Dosimetry (SPSD) method. With this method, every such site represented a set of smaller phantoms of simple geometric shape. RBM distribution across the skeleton, bone size, characteristics of bone micro-architecture, as well as density and chemical composition of the simulated media (RBM, bone) were determined based on the published data. As a result, a computational phantom of the major skeletal sites with active hematopoiesis representing a 5-year-old child was generated that included 43 phantoms of bone fragments. Linear dimensions of phantoms were within 3–75 mm. Micro-architecture parameters varied greatly: BV/TV ratio —13–52%, Tb. Th. — 0.09–0.29 mm, Tb. Sp. —0.48–0.98 mm.

Publisher

Federal Medical Biological Agency

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3