Effect of variability of human bone morphometric parameters on the uncertainty of internal bone marrow doses due to <sup>90</sup>Sr

Author:

Shishkina E. A.1ORCID,Sharagin P. A.2ORCID,Tolstykh E. I.2ORCID

Affiliation:

1. Urals Research Center for Radiation Medicine, Federal Medical Biological Agency of Russia; Chelyabinsk State University

2. Urals Research Center for Radiation Medicine, Federal Medical Biological Agency of Russia

Abstract

Computational phantoms are used to calculate the doses of internal exposure of active bone marrow. The computational phantoms of ICRP were created for a reference man with anatomical characteristics typical of an average individual. The doses calculated with such phantoms correspond to population-average values. Individual variability introduces a stochastic component of uncertainty into the dose estimation. The objective of this study is to assess the effect of individual variability of bone structure dimensions on the results of dosimetric modeling. The phantoms are represented by simple geometry figures filled with trabecular structures and bone marrow (spongiosa), covered externally with a cortical layer. The models of bone geometry are described by parameters characterizing the linear dimensions, the microarchitecture of the spongiosa (trabecular thickness, trabecular separation, bone volume fraction), as well as the cortical layer thickness. By varying these parameters, sets of phantoms were generated to simulate the individual variability of bone geometry. The mean absorbed dose rate in active bone marrow from a single decay of 90Sr/90Y was calculated assuming isotope distribution either in the volume of the trabecular or cortical bone. All estimates are on the example of the phantom of an adult male skeleton. The individual variability of the main parameters of segment computational phantoms depends on size and equal to: a) for linear dimensions – 12-15%; b) for bone volume fraction – 22-24%; c) for cortical thickness – 21-23%. This leads to uncertainties of dose rate estimation equal to 21% – 25%.

Publisher

SPRI of Radiation Hygiene Prof. PV Ramzaev

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3