Affiliation:
1. Ural Research Center for Radiation Medicine, Chelyabinsk, Russia
Abstract
For residents of territories along the Techa River that was contaminated with radioactive substances in the 1950s, bone-seeking beta-emitting 89,90Sr were the main source of internal exposure of active (red ) bone marrow (AM). The dose of these radionuclides conditions the severity of leukemia risk for them. Improvement of the methods of internal AM dosimetry is an important task. Computational 3D phantoms of the skeleton sites are a component of the solution for this task. Simulation of radiation transfer in a heterogeneous bone model allows estimating the dose conversion factors from radionuclide activity to AM dose. This manuscript continues the series of papers covering the development of a set of computational phantoms of a reference human being of different age. The objective of the study was to develop a computational phantom of a one-year-old child skeleton for internal AM dosimetry (exposure due to incorporated beta emitters). Using the original SPSD (stochastic parametric skeletal dosimetry) model, we develop voxel 3D models of skeletal sites. Skeleton sites with active hematopoiesis were modeled as a set of phantoms of simple geometries. Distribution of AM throughout the skeleton and parameters of the phantoms were assessed on the basis of the published results of measurement done in real bones of children aged 9 months to 2 years. The generated computational phantom of a one-year-old child consisted of 39 segments. It simulates the structure of the bone tissue, location of AM, and population variability of the skeleton microstructure and size parameters.
Publisher
Federal Medical Biological Agency
Subject
General Medicine,Urology,Nephrology,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,General Materials Science,Industrial and Manufacturing Engineering,Automotive Engineering
Reference80 articles.
1. Degteva MO, Shagina NB, Vorobiova MI, Shishkina EA, Tolstykh EI, Akleyev AV. Contemporary Understanding of Radioactive Contamination of the Techa River in 1949-1956. Radiats Biol Radioecol. 2016; 56 (5): 523–34.PMID: 30703313. Russian.
2. Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, et al. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. Radiat Environ Biophys. 2013; 52 (1): 47–57. DOI: 10.1007/s00411-012-0438-5. Epub 2012 Nov 4.
3. Akleev AV. Hronicheskij luchevoj sindrom u zhitelej pribrezhnyh sel reki Techa. Chelyabinsk: Kniga, 2012; 464 s. Russian.
4. Preston DL, Sokolnikov ME, Krestinina LY, Stram DO. Estimates of radiation effects on cancer risks in the mayak worker, Techa river and atomic bomb survivor studies. Radiat Prot Dosimetry. 2017; 173 (1–3): 26–31. DOI: 10.1093/rpd/ncw316.
5. Degteva MO, Napier BA, Tolstykh EI, et al. Enhancements in the Techa river dosimetry system: TRDS-2016D Code for reconstruction of deterministic estimates of dose from environmental exposures. Health Phys. 2019; 117 (4): 378–87. DOI: 10.1097/HP.0000000000001067.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献