Affiliation:
1. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
Abstract
We consider the impact of compiler optimizations on the quality of high-level synthesis (HLS)-generated field-programmable gate array (FPGA) hardware. Using an HLS tool implemented within the state-of-the-art LLVM compiler, we study the effect of compiler optimizations on the hardware metrics of circuit area, execution cycles,
FMax
, and wall-clock time. We evaluate 56 different compiler optimizations implemented within LLVM and show that some optimizations significantly affect hardware quality. Moreover, we show that hardware quality is also affected by some optimization parameter values, as well as the order in which optimizations are applied. We then present a new HLS-directed approach to compiler optimizations, wherein we execute
partial
HLS and profiling at intermittent points in the optimization process and use the results to judiciously undo the impact of optimization passes predicted to be damaging to the generated hardware quality. Results show that our approach produces circuits with 16% better speed performance, on average, versus using the standard -O3 optimization level.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Association for Computing Machinery (ACM)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献