Statistical Optimization of FinFET Processor Architectures under PVT Variations Using Dual Device-Type Assignment

Author:

Yu Ye1ORCID,Jha Niraj K.1

Affiliation:

1. Princeton University, Princeton, NJ

Abstract

With semiconductor technology scaling to the 22nm node and beyond, fin field-effect transistor (FinFET) has started replacing complementary metal-oxide semiconductor (CMOS), thanks to its superior control of short-channel effects and much lower leakage current. However, process, supply voltage, and temperature (PVT) variations across the integrated circuit (IC) become worse with technology scaling. Thus, to analyze timing, leakage power, and dynamic power under PVT variations, statistical analysis/optimization techniques are more suitable than traditional static timing/power analysis and optimization counterparts. In this article, we propose a statistical optimization framework using dual device-type assignment at the architecture level under PVT variations that takes spatial correlations into account and leverages circuit-level statistical analysis techniques. To the best of our knowledge, this is the first work to study statistical optimization at the system level under PVT variations. Simulation results show that leakage power yield and dynamic power yield at the mean value of the baseline can be improved by up to 44.2% and 21.2%, respectively, with no loss in timing yield for a single-core processor and up to 43.0% and 50.0%, respectively, without any loss in timing yield for an 8-core chip multiprocessor (CMP), at little area overhead. Under the same (99.0%) power yield constraints, leakage power and dynamic power are reduced by up to 91.2% and 4.3%, respectively, for a single-core processor, and up to 44.6% and 12.5%, respectively, for an 8-core CMP, with no loss in timing yield. We also show that optimizations performed without taking module-to-module and core-to-core spatial correlations into account overestimate yield, establishing the importance of taking such correlations into account.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3