STExplorer: A Hierarchical Autonomous Exploration Strategy with Spatio-temporal Awareness for Aerial Robots

Author:

Chen Bolei1,Cui Yongzheng1ORCID,Zhong Ping1ORCID,Yang Wang1ORCID,Liang Yixiong1ORCID,Wang Jianxin1ORCID

Affiliation:

1. Central South University, China

Abstract

The autonomous exploration task we consider requires Unmanned Aerial Vehicles (UAVs) to actively navigate through unknown environments with the goal of fully perceiving and mapping the environments. Some existing exploration strategies suffer from rough cost budgets, ambiguous Information Gain (IG), and unnecessary backtracking exploration caused by Fragmented Regions (FRs). In our work, a hierarchical spatio-temporal-aware exploration framework is proposed to alleviate these problems. At the local exploration level, the Asymmetrical Traveling Salesman Problem (ATSP) is solved by comprehensively considering exploration time, IG, and heading consistency to avoid blindly exploring. Specifically, the exploration time is reasonably budgeted by fast marching in an artificial potential field. Meanwhile, a transformer-based map occupancy predictor is designed to assist in IG calculation by imagining spatial clues out of the Field of View (FoV), facilitating the prescient exploration. We verify that our local exploration is effective in alleviating the unnecessary back-and-forth movements caused by FRs and the interference of potential obstacle occlusion on the IG calculation. At the global exploration level, the classical Next Best View Points (NBVP) are generalized to Next Best Sub-Regions (NBSR) to choose informative sub-regions for further forward-looking exploration based on a well-designed utility function. Safe flight paths and dynamically feasible trajectories are reasonably generated throughout the exploration process by fast marching and B-spline curve optimization. Comparative simulations and benchmark tests demonstrate that our proposed exploration strategy is quite competitive in terms of exploration path length, total exploration time, and exploration ratio.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Natural Science Foundation of Changsha

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HSPNav: Hierarchical Scene Prior Learning for Visual Semantic Navigation Towards Real Settings;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Robot Autonomous Exploration System Base on Arm-Chassis Collaboration;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

3. Learning Cross-modality Interaction for Robust Depth Perception of Autonomous Driving;ACM Transactions on Intelligent Systems and Technology;2024-04-15

4. Think Holistically, Act Down-to-Earth: A Semantic Navigation Strategy with Continuous Environmental Representation and Multi-step Forward Planning;IEEE Transactions on Circuits and Systems for Video Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3