Learning Cross-modality Interaction for Robust Depth Perception of Autonomous Driving

Author:

Liang Yunji1ORCID,Chen Nengzhen1ORCID,Yu Zhiwen1ORCID,Tang Lei2ORCID,Yu Hongkai3ORCID,Guo Bin1ORCID,Zeng Daniel Dajun4ORCID

Affiliation:

1. Northwestern Polytechnical University, Xi’an, China

2. Chang’an University, Xi’an, China

3. Cleveland State University, Cleveland, USA

4. Institute of Automation Chinese Academy of Sciences, Xi’an, China

Abstract

As one of the fundamental tasks of autonomous driving, depth perception aims to perceive physical objects in three dimensions and to judge their distances away from the ego vehicle. Although great efforts have been made for depth perception, LiDAR-based and camera-based solutions have limitations with low accuracy and poor robustness for noise input. With the integration of monocular cameras and LiDAR sensors in autonomous vehicles, in this article, we introduce a two-stream architecture to learn the modality interaction representation under the guidance of an image reconstruction task to compensate for the deficiencies of each modality in a parallel manner. Specifically, in the two-stream architecture, the multi-scale cross-modality interactions are preserved via a cascading interaction network under the guidance of the reconstruction task. Next, the shared representation of modality interaction is integrated to infer the dense depth map due to the complementarity and heterogeneity of the two modalities. We evaluated the proposed solution on the KITTI dataset and CALAR synthetic dataset. Our experimental results show that learning the coupled interaction of modalities under the guidance of an auxiliary task can lead to significant performance improvements. Furthermore, our approach is competitive against the state-of-the-art models and robust against the noisy input. The source code is available at https://github.com/tonyFengye/Code/tree/master .

Funder

Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3