Deep learning-based robust positioning for all-weather autonomous driving

Author:

Almalioglu YasinORCID,Turan Mehmet,Trigoni Niki,Markham Andrew

Abstract

AbstractInterest in autonomous vehicles (AVs) is growing at a rapid pace due to increased convenience, safety benefits and potential environmental gains. Although several leading AV companies predicted that AVs would be on the road by 2020, they are still limited to relatively small-scale trials. The ability to know their precise location on the map is a challenging prerequisite for safe and reliable AVs due to sensor imperfections under adverse environmental and weather conditions, posing a formidable obstacle to their widespread use. Here we propose a deep learning-based self-supervised approach for ego-motion estimation that is a robust and complementary localization solution under inclement weather conditions. The proposed approach is a geometry-aware method that attentively fuses the rich representation capability of visual sensors and the weather-immune features provided by radars using an attention-based learning technique. Our method predicts reliability masks for the sensor measurements, eliminating the deficiencies in the multimodal data. In various experiments we demonstrate the robust all-weather performance and effective cross-domain generalizability under harsh weather conditions such as rain, fog and snow, as well as day and night conditions. Furthermore, we employ a game-theoretic approach to analyse the interpretability of the model predictions, illustrating the independent and uncorrelated failure modes of the multimodal system. We anticipate our work will bring AVs one step closer to safe and reliable all-weather autonomous driving.

Funder

United States Department of Commerce | National Institute of Standards and Technology

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3