Affiliation:
1. Pennsylvania State University, University Park, PA
2. Samsung Semiconductor Inc., San Jose, CA
3. Arizona State University, Tempe, AZ
Abstract
Resistive random access memory (ReRAM) technology is an emerging candidate for next-generation nonvolatile memory (NVM) architecture due to its simple structure, low programming voltage, fast switching speed, high on/off ratio, excellent scalability, good endurance, and great compatibility with silicon CMOS technology. The most attractive of the characteristics of ReRAM is its cross-point structure, which features a 4
F
2
cell size.
In a cross-point structure, the existence of sneak current and resulting voltage loss due to the wire's resistance might cause read and write failures if not designed properly. In addition, a robust ReRAM design needs to deal with both soft and hard errors. In this article, we summarize mechanisms of both soft and hard errors of ReRAM cells and propose a unified model to characterize different failure behaviors. We quantitatively analyze the impact of cell failure types on the reliability of the cross-point array. We also propose an error-resilient architecture, which avoids unnecessary writes in the hard error detection unit. Assuming constant soft error rate, our approach can extend the lifetime of ReRAM up to 75% over a design without hard error detection and up to 12% over the design with a “write-verify” detection mechanism. Our approach yields greater significant lifetime improvement when considering postcycling retention degradation.
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献