Software Systems Implementation and Domain-Specific Architectures towards Graph Analytics

Author:

Jin Hai1,Qi Hao1,Zhao Jin12,Jiang Xinyu1,Huang Yu12,Gui Chuangyi1,Wang Qinggang1,Shen Xinyang1,Zhang Yi1,Hu Ao1,Chen Dan1,Liu Chaoqiang1,Liu Haifeng1,He Haiheng1,Ye Xiangyu1,Wang Runze1,Yuan Jingrui1,Yao Pengcheng12,Zhang Yu12,Zheng Long12,Liao Xiaofei1

Affiliation:

1. National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

2. Zhejiang-HUST Joint Research Center for Graph Processing, Zhejiang Lab, Zhejiang, China

Abstract

Graph analytics, which mainly includes graph processing, graph mining, and graph learning, has become increasingly important in several domains, including social network analysis, bioinformatics, and machine learning. However, graph analytics applications suffer from poor locality, limited bandwidth, and low parallelism owing to the irregular sparse structure, explosive growth, and dependencies of graph data. To address those challenges, several programming models, execution modes, and messaging strategies are proposed to improve the utilization of traditional hardware and performance. In recent years, novel computing and memory devices have emerged, e.g., HMCs, HBM, and ReRAM, providing massive bandwidth and parallelism resources, making it possible to address bottlenecks in graph applications. To facilitate understanding of the graph analytics domain, our study summarizes and categorizes current software systems implementation and domain-specific architectures. Finally, we discuss the future challenges of graph analytics.

Funder

Major Scientific Project of Zhejiang Lab

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3