Development of machine learning prediction models to explore nutrients predictive of cardiovascular disease using Canadian linked population-based data

Author:

Morgenstern Jason D.1,Rosella Laura C.234,Costa Andrew P.135,Anderson Laura N.16

Affiliation:

1. Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.

2. Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.

3. Institute for Clinical Evaluative Sciences (ICES), Toronto, Ontario, Canada.

4. Vector Institute, Toronto, Ontario, Canada.

5. Department of Medicine, McMaster University, Hamilton, Ontario, Canada.

6. Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON, Canada.

Abstract

Machine learning may improve use of observational data to understand the nutritional epidemiology of cardiovascular disease (CVD) through better modelling of non-linearity, non-additivity, and dietary complexity. Our objective was to develop machine learning prediction models for exploring how nutrients are related to CVD risk and to evaluate their predictive performance. We established a population-based cohort from the Canadian Community Health Survey and measured CVD incidence and mortality from 2004 to 2018 using administrative databases of national hospital discharges and deaths. Predictors included 61 nutrition variables and fourteen socioeconomic, demographic, psychological, and behavioural variables. Conditional inference forest models were interpreted and evaluated by permutation feature importance, accumulated local effects, and predictive discrimination and calibration. A total of 12 130 individuals were included in the study. Use of supplements, caffeine, and alcohol were the most important nutrition variables for prediction of CVD. Supplement use was associated with decreased risk, caffeine was associated with increasing risk, and alcohol had a u-shaped association with risk. The model had an out-of-sample c-statistic of 0.821 (95% confidence interval = 0.801–0.842). Exploratory findings included both known and novel associations and predictive performance was competitive, suggesting that further application of machine learning to nutritional epidemiology may help elucidate risks and improve predictive models. Novelty: Machine learning prediction models were developed for CVD using dietary data. Models were interpreted with interpretable machine learning techniques, revealing diverse associations between diet and CVD. Models achieved comparable or superior predictive performance to existing CVD risk prediction models.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3