Machine learning identifies prominent factors associated with cardiovascular disease: findings from two million adults in the Kashgar Prospective Cohort Study (KPCS)

Author:

Li Jia-Xin,Li Li,Zhong Xuemei,Fan Shu-Jun,Cen Tao,Wang Jianquan,He Chuanjiang,Zhang Zhoubin,Luo Ya-Na,Liu Xiao-Xuan,Hu Li-Xin,Zhang Yi-Dan,Qiu Hui-Ling,Dong Guang-Hui,Zou Xiao-Guang,Yang Bo-Yi

Abstract

Abstract Background Identifying factors associated with cardiovascular disease (CVD) is critical for its prevention, but this topic is scarcely investigated in Kashgar prefecture, Xinjiang, northwestern China. We thus explored the CVD epidemiology and identified prominent factors associated with CVD in this region. Methods A total of 1,887,710 adults at baseline (in 2017) of the Kashgar Prospective Cohort Study were included in the analysis. Sixteen candidate factors, including seven demographic factors, 4 lifestyle factors, and 5 clinical factors, were collected from a questionnaire and health examination records. CVD was defined according to International Clinical Diagnosis (ICD-10) codes. We first used logistic regression models to investigate the association between each of the candidate factors and CVD. Then, we employed 3 machine learning methods—Random Forest, Random Ferns, and Extreme Gradient Boosting—to rank and identify prominent factors associated with CVD. Stratification analyses by sex, ethnicity, education level, economic status, and residential setting were also performed to test the consistency of the ranking. Results The prevalence of CVD in Kashgar prefecture was 8.1%. All the 16 candidate factors were confirmed to be significantly associated with CVD (odds ratios ranged from 1.03 to 2.99, all p values < 0.05) in logistic regression models. Further machine learning-based analysis suggested that age, occupation, hypertension, exercise frequency, and dietary pattern were the five most prominent factors associated with CVD. The ranking of relative importance for prominent factors in stratification analyses showed that the factor importance generally followed the same pattern as that in the overall sample. Conclusions CVD is a major public health concern in Kashgar prefecture. Age, occupation, hypertension, exercise frequency, and dietary pattern might be the prominent factors associated with CVD in this region.In the future, these factors should be given priority in preventing CVD in future.

Funder

National Natural Science Foundation of China

State Key Laboratory of Infectious Disease Prevention and Control

Science and Technology Project of Guangzhou

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Health Policy,Health (social science),Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3