Highly enhanced ferroelectricity in HfO 2 -based ferroelectric thin film by light ion bombardment

Author:

Kang Seunghun1ORCID,Jang Woo-Sung2ORCID,Morozovska Anna N.3ORCID,Kwon Owoong1,Jin Yeongrok4ORCID,Kim Young-Hoon2ORCID,Bae Hagyoul5ORCID,Wang Chenxi1ORCID,Yang Sang-Hyeok2ORCID,Belianinov Alex67,Randolph Steven6ORCID,Eliseev Eugene A.8ORCID,Collins Liam6ORCID,Park Yeehyun1ORCID,Jo Sanghyun5,Jung Min-Hyoung2ORCID,Go Kyoung-June9ORCID,Cho Hae Won1,Choi Si-Young9ORCID,Jang Jae Hyuck10ORCID,Kim Sunkook1ORCID,Jeong Hu Young11ORCID,Lee Jaekwang4ORCID,Ovchinnikova Olga S.12,Heo Jinseong5ORCID,Kalinin Sergei V.613ORCID,Kim Young-Min2ORCID,Kim Yunseok1ORCID

Affiliation:

1. School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.

2. Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.

3. Institute of Physics, National Academy of Sciences of Ukraine, 46, Prospekt. Nauky, 03028 Kyiv, Ukraine.

4. Department of Physics, Pusan National University, Busan 46241, Republic of Korea.

5. Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea.

6. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

7. Sandia National Laboratories, Albuquerque, NM 87123, USA.

8. Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Krjijanovskogo 3, 03142 Kyiv, Ukraine.

9. Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.

10. Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea.

11. Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

12. Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

13. Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37920, USA.

Abstract

Continuous advancement in nonvolatile and morphotropic beyond-Moore electronic devices requires integration of ferroelectric and semiconductor materials. The emergence of hafnium oxide (HfO 2 )–based ferroelectrics that are compatible with atomic-layer deposition has opened interesting and promising avenues of research. However, the origins of ferroelectricity and pathways to controlling it in HfO 2 are still mysterious. We demonstrate that local helium (He) implantation can activate ferroelectricity in these materials. The possible competing mechanisms, including He ion–induced molar volume changes, vacancy redistribution, vacancy generation, and activation of vacancy mobility, are analyzed. These findings both reveal the origins of ferroelectricity in this system and open pathways for nanoengineered binary ferroelectrics.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3