A stable rhombohedral phase in ferroelectric Hf(Zr) 1+ x O 2 capacitor with ultralow coercive field

Author:

Wang Yuan12ORCID,Tao Lei3ORCID,Guzman Roger3ORCID,Luo Qing12ORCID,Zhou Wu3ORCID,Yang Yang12ORCID,Wei Yingfen4ORCID,Liu Yu12,Jiang Pengfei12ORCID,Chen Yuting12,Lv Shuxian12ORCID,Ding Yaxin12,Wei Wei12ORCID,Gong Tiancheng12,Wang Yan12,Liu Qi4ORCID,Du Shixuan356ORCID,Liu Ming124ORCID

Affiliation:

1. State Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China.

2. Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China.

3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.

4. Frontier Institute of Chip and System, Fudan University, Shanghai, China.

5. Institute of Physics, Chinese Academy of Sciences, Beijing, China.

6. Songshan Lake Materials Laboratory, Dongguan, China.

Abstract

Hafnium oxide–based ferroelectric materials are promising candidates for next-generation nanoscale devices because of their ability to integrate into silicon electronics. However, the intrinsic high coercive field of the fluorite-structure oxide ferroelectric devices leads to incompatible operating voltage and limited endurance performance. We discovered a complementary metal-oxide semiconductor (CMOS)–compatible rhombohedral ferroelectric Hf(Zr) 1+ x O 2 material rich in hafnium-zirconium [Hf(Zr)]. X-ray diffraction combined with scanning transmission electron microscopy reveals that the excess Hf(Zr) atoms intercalate within the hollow sites. We found that the intercalated atoms expand the lattice and increase the in-plane and out-of-plane stresses, which stabilize both the rhombohedral phase (r-phase) and its ferroelectric properties. Our ferroelectric devices, which are based on the r-phase Hf(Zr) 1+ x O 2 , exhibit an ultralow coercive field (~0.65 megavolts per centimeter). Moreover, we achieved a high endurance of more than 10 12 cycles at saturation polarization. This material discovery may help to realize low-cost and long-life memory chips.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3