Emergent ferroelectricity in subnanometer binary oxide films on silicon

Author:

Cheema Suraj S.12ORCID,Shanker Nirmaan2ORCID,Hsu Shang-Lin2,Rho Yoonsoo3ORCID,Hsu Cheng-Hsiang2ORCID,Stoica Vladimir A.45ORCID,Zhang Zhan5ORCID,Freeland John W.5ORCID,Shafer Padraic6ORCID,Grigoropoulos Costas P.3,Ciston Jim7ORCID,Salahuddin Sayeef28ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.

2. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.

3. Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA.

4. Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.

5. Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.

6. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

7. National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

8. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Abstract

The critical size limit of voltage-switchable electric dipoles has extensive implications for energy-efficient electronics, underlying the importance of ferroelectric order stabilized at reduced dimensionality. We report on the thickness-dependent antiferroelectric-to-ferroelectric phase transition in zirconium dioxide (ZrO 2 ) thin films on silicon. The emergent ferroelectricity and hysteretic polarization switching in ultrathin ZrO 2 , conventionally a paraelectric material, notably persists down to a film thickness of 5 angstroms, the fluorite-structure unit-cell size. This approach to exploit three-dimensional centrosymmetric materials deposited down to the two-dimensional thickness limit, particularly within this model fluorite-structure system that possesses unconventional ferroelectric size effects, offers substantial promise for electronics, demonstrated by proof-of-principle atomic-scale nonvolatile ferroelectric memory on silicon. Additionally, it is also indicative of hidden electronic phenomena that are achievable across a wide class of simple binary materials.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3