The advantages of a rolling foot in human walking

Author:

Adamczyk Peter G.1,Collins Steven H.1,Kuo Arthur D.1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA

Abstract

SUMMARYThe plantigrade human foot rolls over the ground during each walking step,roughly analogous to a wheel. The center of pressure progresses on the ground like a wheel of radius 0.3 L (leg length). We examined the effect of varying foot curvature on the mechanics and energetics of walking. We controlled curvature by attaching rigid arc shapes of various radii to the bottoms of rigid boots restricting ankle motion. We measured mechanical work performed on the center of mass (COM), and net metabolic rate, in human subjects (N=10) walking with seven arc radii from 0.02–0.40 m. Simple models of dynamic walking predict that redirection of COM velocity requires step-to-step transition work, decreasing quadratically with arc radius. Metabolic cost would be expected to change in proportion to mechanical work. We measured the average rate of negative work performed on the COM, and found that it followed the trend well (r2=0.95), with 2.37 times as much work for small radii as for large. Net metabolic rate(subtracting quiet standing) also decreased with increasing arc radius to a minimum at 0.3 L, with a slight increase thereafter. Maximum net metabolic rate was 6.25 W kg–1 (for small-radius arc feet),about 59% greater than the minimum rate of 3.93 W kg–1, which in turn was about 45% greater than the rate in normal walking. Metabolic rate was fit reasonably well (r2=0.86) by a quadratic curve,but exceeded that expected from COM work for extreme arc sizes. Other factors appear to increase metabolic cost for walking on very small and very large arc feet. These factors may include effort expended to stabilize the joints(especially the knee) or to maintain balance. Rolling feet with curvature 0.3 L appear energetically advantageous for plantigrade walking,partially due to decreased work for step-to-step transitions.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference30 articles.

1. Brockway, J. M. (1987). Derivation of formulae used to calculate energy expenditure in man. Hum. Nutr. Clin. Nutr.41,463-471.

2. Burse, R. L. and Pandolf, K. B. (1979). Physical conditioning of sedentary young men with ankle weights during working hours. Ergonomics22,69-78.

3. Dean, J. C. and Kuo, A. D. (2005). Powering the kneed passive walker with biarticular springs. In Proceedings of the International Society of Biomechanics XXth Congress and the American Society of Biomechanics Annual Meeting, pp. 719. Cleveland, OH. http://www.isb2005.org/proceedings/abstracts/0719.pdf.

4. Dhalla, R., Johnson, J. E. and Engsberg, J.(2003). Can the use of a terminal device augment plantar pressure reduction with a total contact cast? Foot Ankle Int.24,500-505.

5. Doke, J., Donelan, J. M. and Kuo, A. D. (2005). Mechanics and energetics of swinging the human leg. J. Exp. Biol.208,439-445.

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3