Greater than recommended stiffness and power setting of a stance-phase powered leg prosthesis can improve step-to-step transition work and effective foot length ratio during walking in people with transtibial amputation

Author:

Tacca Joshua R.,Colvin Zane A.,Grabowski Alena M.

Abstract

People with unilateral transtibial amputation (TTA) using a passive-elastic prosthesis exhibit lower positive affected leg trailing work (ALtrail Wpos) and a greater magnitude of negative unaffected leg leading work (ULlead Wneg) during walking than non-amputees, which may increase joint pain and osteoarthritis risk in the unaffected leg. People with TTA using a stance-phase powered prosthesis (e.g., BiOM, Ottobock, Duderstadt, Germany) walk with increased ALtrail Wpos and potentially decreased magnitude of ULlead Wneg compared to a passive-elastic prosthesis. The BiOM includes a passive-elastic prosthesis with a manufacturer-recommended stiffness category and can be tuned to different power settings, which may change ALtrail Wpos, ULlead Wneg, and the prosthesis effective foot length ratio (EFLR). Thirteen people with TTA walked using 16 different prosthetic stiffness category and power settings on a level treadmill at 0.75–1.75 m/s. We constructed linear mixed effects models to determine the effects of stiffness category and power settings on ALtrail Wpos, ULlead Wneg, and EFLR and hypothesized that decreased stiffness and increased power would increase ALtrail Wpos, not change and decrease ULlead Wneg magnitude, and decrease and not change prosthesis EFLR, respectively. We found there was no significant effect of stiffness category on ALtrail Wpos but increased stiffness reduced ULlead Wneg magnitude, perhaps due to a 0.02 increase in prosthesis EFLR compared to the least stiff category. Furthermore, we found that use of the BiOM with 10% and 20% greater than recommended power increased ALtrail Wpos and decreased ULlead Wneg magnitude at 0.75–1.00 m/s. However, prosthetic power setting depended on walking speed so that use of the BiOM increased ULlead Wneg magnitude at 1.50–1.75 m/s compared to a passive-elastic prosthesis. Ultimately, our results suggest that at 0.75–1.00 m/s, prosthetists should utilize the BiOM attached to a passive-elastic prosthesis with an increased stiffness category and power settings up to 20% greater than recommended based on biological ankle values. This prosthetic configuration can allow people with unilateral transtibial amputation to increase ALtrail Wpos and minimize ULlead Wneg magnitude, which could reduce joint pain and osteoarthritis risk in the unaffected leg and potentially lower the metabolic cost of walking.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3