Mechanics and energetics of swinging the human leg

Author:

Doke Jiro1,Donelan J. Maxwell2,Kuo Arthur D.1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor,MI 48109-2125 USA

2. Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7 Canada

Abstract

SUMMARYWe measured how much metabolic energy is expended to swing a human leg. A previous dynamical model of walking predicted that increasing metabolic costs for walking with step length and step frequency trade-off against each other to determine the optimum step combination at a given speed. Simple pendulum dynamics indicate that the cost of walking at high step frequencies could be associated with driving the legs back and forth relative to the body, at a rate increasing approximately with the fourth power of frequency, possibly due to the low economy of producing muscle force for short durations. A similar cost would be expected for isolated swinging of a leg at faster than its natural frequency. We constructed an apparatus to measure work performed on the leg, and measured metabolic cost as human subjects (N=12) swung one leg at frequencies 0.5-1.1 Hz and fixed amplitude. Rate of mechanical work ranged from 0.02-0.27 W kg-1 over these frequencies. Net metabolic rate for leg swinging (subtracting that for quiet standing) increased from 0.41-2.10 W kg-1, approximately with the fourth power of frequency(R2=0.92) and in proportion to a hypothesized cost of force production for short durations. The costs of producing force and work could account for the increase. In a crude comparison, moving the legs back and forth at a typical stride frequency of 0.9 Hz, might consume about one-third of the net energy (2.8±0.8 W kg-1) needed for walking at 1.3 m s-1.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3