Does the application of ground force set the energetic cost of cross-country skiing?

Author:

Bellizzi Matthew J.1,King Kellin A. D.1,Cushman Sara K.1,Weyand Peter G.1

Affiliation:

1. Museum of Comparative Zoology, Concord Field Station, Harvard University, Bedford, Massachusetts 01730

Abstract

We tested whether the rate at which force is applied to the ground sets metabolic rates during classical-style roller skiing in four ways: 1) by increasing speed (from 2.5 to 4.5 m/s) during skiing with arms only, 2) by increasing speed (from 2.5 to 4.5 m/s) during skiing with legs only, 3) by changing stride rate (from 25 to 75 strides/min) at each of three speeds (3.0, 3.5, and 4.0 m/s) during skiing with legs only, and 4) by skiing with arms and legs together at three speeds (2.0–3.2 m/s, 1.5° incline). We determined net metabolic rates from rates of O2 consumption (gross O2 consumption − standing O2 consumption) and rates of force application from the inverse period of pole-ground contact [1/ t p(arms)] for the arms and the inverse period of propulsion [1/ t p(legs)] for the legs. During arm-and-leg skiing at different speeds, metabolic rates changed in direct proportion to rates of force application, while the net ground force to counteract friction and gravity (F) was constant. Consequently, metabolic rates were described by a simple equation (E˙metab=F ⋅ 1/ t p ⋅ C, where E˙metab is metabolic rates) with cost coefficients ( C) of 8.2 and 0.16 J/N for arms and legs, respectively. Metabolic rates predicted from net ground forces and rates of force application during combined arm-and-leg skiing agreed with measured metabolic rates within ±3.5%. We conclude that rates of ground force application to support the weight of the body and overcome friction set the energetic cost of skiing and that the rate at which muscles expend metabolic energy during weight-bearing locomotion depends on the time course of their activation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3