Anisotropic deformation of 4H-SiC wafers: insights from nanoindentation tests

Author:

Liu Xiaoshuang,Wang RongORCID,Zhang Junran,Lu Yunhao,Zhang Yiqiang,Yang Deren,Pi XiaodongORCID

Abstract

Abstract In this work, the anisotropic deformation and anisotropic mechanical properties of 4H silicon carbide (4H-SiC) single crystal wafers are proposed by using nanoindentation. The C face of a 4H-SiC wafer has higher hardness and lower fracture toughness than those of the Si face. Because the deformation of 4H-SiC is assisted by the nucleation and slip of basal plane dislocations (BPDs), especially the slip of Si-core partial dislocations (PDs) of the BPDs, the nucleation and slip of the Si-core PDs in the Si face of 4H-SiC is easier than those in the C face, which releases the nanoindentation-induced stress and results in the decrease of the hardness and increase of the fracture toughness of the Si face of 4H-SiC wafers. Due to the hexagonal lattice of 4H-SiC, the hardness along $?> < 1 1 ˉ 00 > of 4H-SiC is higher than that along $?> < 11 2 ˉ 0 > , but the fracture toughness along the $?> < 1 1 ˉ 00 > is lower than that along the $?> < 11 2 ˉ 0 > , as a result of the enhanced glide of dislocations along the most closely-packed direction. The insights gained in this work are expected to shed light on the optimization of the mechanical processing of 4H-SiC wafers.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Natural Science Foundation of China for Innovative Research Groups

Fundamental Research Funds for the Central Universities

Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3