Abstract
Abstract
The reliable conductance modulation of synaptic devices is key when implementing high-performance neuromorphic systems. Herein, we propose a floating gate indium gallium zinc oxide (IGZO) synaptic device with an aluminum trapping layer to investigate the correlation between its diverse electrical parameters and pattern recognition accuracy. Basic synaptic properties such as excitatory postsynaptic current, paired pulse facilitation, long/short term memory, and long-term potentiation/depression are demonstrated in the IGZO synaptic transistor. The effects of pulse tuning conditions associated with the pulse voltage magnitude, interval, duration, and cycling number of the applied pulses on the conductance update are systematically investigated. It is discovered that both the nonlinearity of the conductance update and cycle-to-cycle variation should be critically considered using an artificial neural network simulator to ensure the high pattern recognition accuracy of Modified National Institute of Standards and Technology (MNIST) handwritten digit images. The highest recognition rate of the MNIST handwritten dataset is 94.06% for the most optimized pulse condition. Finally, a systematic study regarding the synaptic parameters must be performed to optimize the developed synapse device.
Funder
Chungbuk National University Korea National University Development Project
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献