Polyurethane modified screen – printed electrode for the electrochemical detection of histamine in fish

Author:

Munir M A,Heng L Y,Badri K H

Abstract

Abstract Histamine needs to be determined because of its toxicity. Histamine is commonly determined using chromatography, where not only that the instrument is expensive, the process is very tedious and require an expert. A sensor was developed using palm-based polyurethane as an electro-sensor substrate. Palm-based polyurethane (PU) was produced via condensation polymerization between palm kernel oil-based monoester polyol (PKOp) and 4,4’- diphenylmethane diisocyanate (MDI). PU offers high porosity and capability to attach onto screen–printed electrode (SPE) sturdily without being disintegrated. PU–SPE adsorbed histamine onto its pores, before being oxidized. The oxidation process was detected using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Histamine was oxidized electrochemically at +0.31 V (vs. Ag/AgCl, 1 mol·L-1, pH 7.5). Differential pulse voltemmetric approach were used in order to get a satisfactory response, thus the histamine concentration was made in the range from 1 × 10-4 to 1 mmol·L-1. A good sensitivity of 0.1 mmol·L-1 was attained with 3.07 % during intraday and 9.55 % during interday. The detection and quantification limits of histamine acquired at 0.17 mmol·L-1 and 0.53 mmol·L-1, respectively. A wide variety of interfering compounds were also examined in order to establish their effect, if any, on the determination of histamine at the PU modified electrode. The sensor showed an excellent anti – interference property towards the other amines. The developed chemical sensor using PU – SPE has a good potential to determine histamine level in mackerel (Rastrelliger Brachysoma) owing to its simplicity and reproducibility.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3