Activation energy for Cu-Sn intermetallic in CNT-reinforced Sn-1.0Ag-0.5Cu solder

Author:

Mayappan Ramani,Salleh Amirah,Tokiran Nurul Atiqah,Awang N.A.

Abstract

Purpose The purpose of this study is to investigate the addition of 0.05 Wt.% carbon nanotube (CNT) into the Sn-1.0Ag-0.5Cu (SAC) solder on the intermetallic (IMC) growth. Lead-based solders play an important role in a variety of applications in electronic industries. Due to the toxicity of the lead in the solder, lead-free solders were proposed to replace the lead-based solders. Sn-Ag-Cu solder family is one of the lead-free solders, which are proposed and considered as a potential replacement. Unfortunately, the Sn-Ag-Cu solder faces some reliability problems because of the formation of the thick intermetallic compounds. So the retardation of intermetallic growth is prime important. Design/methodology/approach The solder joint was aged under liquid state aging with soldering time from 1 to 60 min. Findings Two types of intermetallics, which are Cu6Sn5 and Cu3Sn were observed under a scanning electron microscope. The morphology of Cu6Sn5 intermetallic transformed from scallop to planar type as the soldering time increases. The addition of carbon nanotube into the SAC solder has retarded the Cu6Sn5 intermetallic growth rate by increasing its activation energy from 97.86 to 101.45 kJ/mol. Furthermore, the activation energy for the Cu3Sn growth has increased from 102.10 to 104.23 kJ/mol. Originality/value The increase in the activation energy indicates that the growth of the intermetallics was slower. This implies that the addition of carbon nanotube increases the reliability of the solder joint and are suitable for microelectronics applications.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Reference25 articles.

1. Growth kinetics of intermetallic layer in lead-free Sn-5Sb solder reinforced with multi-walled carbon nanotubes;Journal of Materials Science: Materials in Electronics,2015

2. Effect of fluxes on Sn-Zn-Bi solder alloys on copper substrate;Soldering & Surface Mount Technology,2017

3. Effects of Ni nanoparticles addition on the microstructure, electrical and mechanical properties of Sn-Ag-Cu alloy;Materialia,2019

4. One-and two-dimensional diffusion of metals atoms in graphene;Small,2008

5. Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints;Intermetallics,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3