Sleep signal controlled footless domino circuit for low leakage current

Author:

Pandey Amit Kumar,Gupta Tarun Kumar,Verma Pawan Kumar

Abstract

Purpose This paper aims to propose a new sleep signal controlled footless domino circuit for reducing the subthreshold and gate oxide leakage currents. Design/methodology/approach In the proposed circuit, a P channel MOSFET (PMOS) sleep switch transistor is inserted between the power supply and the output node. The sleep transistor, the source of the pull-down network, and the source of the N channel MOSFET (NMOS) transistor of the output inverter are controlled by this additional sleep signal to place the footless domino circuit in a low leakage state. Findings The authors simulate the proposed circuit by using HSPICE in 45-nm CMOS technology for OR and AND logic gates such as OR2, OR4, OR8, AND2 and AND4 at 25°C and 110°C. The proposed circuit reduces leakage power consumption as compared to the existing circuits. Originality/value The proposed circuit significantly reduces the total leakage power consumption up to 99.41 and 99.51 per cent as compared to the standard dual-threshold voltage footless domino circuits at 25°C and 110°C, respectively, and up to 93.79 and 97.98 per cent as compared to the sleep control techniques at 25°C and 110°C, respectively. Similarly, the proposed circuit reduces the active power consumption up to 26.76 and 86.25 per cent as compared to the standard dual-threshold voltage and sleep control techniques footless domino circuits at 25°C and 110°C, respectively.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference26 articles.

1. High-speed dynamic logic styles for scaled-down CMOS and MTCMOS technologies,2000

2. A new leakage-tolerant domino circuit using voltage-comparison for wide fan-in gates in deep sub-micron technology;Integration, The VLSI Journal,2015

3. Berkeley Predictive Technology Model (BPTM) (2007), Univ. California, Berkley, available at: www.ptm.asu.edu

4. Analysis and optimization of leakage current characteristics in Sub-65nm dual Vt footed domino circuits;Microelectronics Journal,2008

5. Lector with footed-diode inverter: a technique for leakage reduction in domino circuits;Circuits, Systems & Signal Processing,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3