Author:
Ahanda Joseph Jean-Baptiste Mvogo,Mbede Jean Bosco,Melingui Achille,Zobo Bernard Essimbi
Abstract
SUMMARYThe problem of robust adaptive control of a robotic manipulator subjected to uncertain dynamics and joint space constraints is addressed in this paper. Command filters are used to overcome the time derivatives of virtual control, thus reducing the need for desired trajectory differentiations. A barrier Lyapunov function is used to deal with the joint space constraints. A robust adaptive support vector regression architecture is used to reduce filtering errors, approximation errors and handle dynamic uncertainties. The stability analysis of the closed-loop system using the Lyapunov theory permits to highlight adaptation laws and to prove that all signals of the closed-loop system are bounded. Simulations show the effectiveness of the proposed control strategy.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献