Abstract
AbstractIn this paper, we present a broad learning control method for a two-link flexible manipulator with prescribed performance (PP) and actuator faults. The trajectory tracking errors are processed through two consecutive error transformations to achieve the constraints in terms of the overshoot, transient error, and steady-state error. And the barrier Lyapunov function is employed to implement constraints on the transition state variable. Then, the improved radial basis function neural networks combined with broad learning theory are constructed to approximate the unknown model dynamics of flexible robotic manipulator. The proposed fault-tolerant PP control cannot only ensure tracking errors converge into a small region near zero within the preset finite time but also address the problem caused by actuator faults. All the closed-loop error signals are uniformly ultimately bounded via the Lyapunov stability theory. Finally, the feasibility of the proposed control is verified by the simulation results.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献