Nonholonomic mobile robots' trajectory tracking model predictive control: a survey

Author:

Nascimento Tiago P.ORCID,Dórea Carlos E. T.,Gonçalves Luiz Marcos G.

Abstract

SUMMARYModel predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform the needed calculations for this technique. This kind of control algorithms can achieve better results in trajectory tracking control of mobile robots than classical control approaches. In this paper, we present a review of recent developments in trajectory tracking control of mobile robot systems using model predictive control theory, especially when nonholonomicity is present. Furthermore, we point out the growth of the related research starting with the boom of mobile robotics in the 90s and discuss reported field applications of the described control problem. The objective of this paper is to provide a unified and accessible presentation, placing the classical model, problem formulations and approaches into a proper context and to become a starting point for researchers who are initiating their endeavors in linear/nonlinear MPC applied to nonholonomic mobile robots. Finally, this work aims to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful works, including our contributions to state-of-the-art.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A simplified trajectory tracking control based on linear design for Skid-Steered wheeled UGVs;Journal of the Franklin Institute;2024-02

2. Artificial steady-state-based nonlinear MPC without terminal ingredients for wheeled mobile robot;2023 11th RSI International Conference on Robotics and Mechatronics (ICRoM);2023-12-19

3. Cooperative game-oriented optimal robust control for an uncertain wheeled mobile robot with position constraints;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-12-16

4. Model identification and validation of cascade control schemes for a differential drive mobile robot;2023 IEEE International Conference on Robotics and Biomimetics (ROBIO);2023-12-04

5. Linear Controller Design using Pole Placement Method for Nonholonomic Mobile Robot Trajectory Tracking;2023 Sixth International Conference on Vocational Education and Electrical Engineering (ICVEE);2023-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3