Knowledge tracing for adaptive learning in a metacognitive tutor

Author:

Carlon May Kristine Jonson1,Cross Jeffrey S.1

Affiliation:

1. Tokyo Institute of Technology , Meguro , Tokyo , Japan

Abstract

Abstract Adaptive learning is provided in intelligent tutoring systems (ITS) to enable learners with varying abilities to meet their expected learning outcomes. Despite the personalized learning afforded by ITSes using adaptive learning, learners are still susceptible to shallow learning. Introducing metacognitive tutoring to teach learners how to be aware of their knowledge can enable deeper learning. However, metacognitive tutoring on top of cognitive tutoring can lead to unsustainable cognitive loads. Using metacognitive inputs for knowledge tracing was explored for managing cognitive loads. Hidden Markov models (HMM) and artificial neural networks were used to train models on a synthetic dataset created from predetermined learner personas. The models created with metacognitive inputs were compared with the models created without said inputs. The models using metacognitive inputs performed better than the standard models while still following learning intuitions. This indicates that combining knowledge tracing and metacognitive tutoring is a viable option for improving learning outcomes. This is an important finding since online learning, which demands metacognitive skills, is becoming popular for various topics, including those that are challenging even with immediate teacher assistance.

Publisher

Walter de Gruyter GmbH

Subject

Social Sciences (miscellaneous),Developmental and Educational Psychology,Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Introduction to Bayesian Knowledge Tracing with pyBKT;Psych;2023-07-23

2. A SHAP-Inspired Method for Computing Interaction Contribution in Deep Knowledge Tracing;Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky;2023

3. Predicting Guesses and Slips Through Question Encoding with Complexity Hints;2022 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE);2022-12

4. Adaptive Knowledge Control in Digital Learning as a Factor in Improving the Quality of Education;Education Sciences;2022-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3