An Introduction to Bayesian Knowledge Tracing with pyBKT

Author:

Bulut Okan1ORCID,Shin Jinnie2ORCID,Yildirim-Erbasli Seyma N.3ORCID,Gorgun Guher4ORCID,Pardos Zachary A.5ORCID

Affiliation:

1. Centre for Research in Applied Measurement and Evaluation, University of Alberta, Edmonton, AB T6G 2G5, Canada

2. College of Education, University of Florida, Gainesville, FL 32611, USA

3. Faculty of Arts, Concordia University of Edmonton, Edmonton, AB T5B 4E4, Canada

4. Measurement, Evaluation, and Data Science, University of Alberta, Edmonton, AB T6G 2G5, Canada

5. School of Education, University of California Berkeley, Berkeley, CA 94720, USA

Abstract

This study aims to introduce Bayesian Knowledge Tracing (BKT), a probabilistic model used in educational data mining to estimate learners’ knowledge states over time. It also provides a practical guide to estimating BKT models using the pyBKT library available in Python. The first section presents an overview of BKT by explaining its theoretical foundations and advantages in modeling individual learning processes. In the second section, we describe different variants of the standard BKT model based on item response theory (IRT). Next, we demonstrate the estimation of BKT with the pyBKT library in Python, outlining data pre-processing steps, parameter estimation, and model evaluation. Different cases of knowledge tracing tasks illustrate how BKT estimates learners’ knowledge states and evaluates prediction accuracy. The results highlight the utility of BKT in capturing learners’ knowledge states dynamically. We also show that the model parameters of BKT resemble the parameters from logistic IRT models.

Publisher

MDPI AG

Subject

General Medicine

Reference39 articles.

1. Bayesian knowledge tracing, logistic models, and beyond: An overview of learner modeling techniques;User Model. User-Adapt. Interact.,2017

2. Knowledge component (KC) approaches to learner modeling;Aleven;Des. Recomm. Intell. Tutoring Syst.,2013

3. Student modeling approaches: A literature review for the last decade;Chrysafiadi;Expert Syst. Appl.,2013

4. Nkambou, R., Bourdeau, J., and Mizoguchi, R. (2010). Advances in Intelligent Tutoring Systems, Springer.

5. Swanson, R., Vaish, R., Orkin, J., Niehaus, J., Godwin, J.A., Guarino, S., and Youngblood, G.M. (2012, January 8–12). A review of student modeling techniques in intelligent tutoring systems. Proceedings of the 8th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, Stanford, CA, USA.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3