Thermal transport of defective β-Ga2O3 and B(In)GaO3 alloys from atomistic simulations

Author:

Zhang Xiaoning12ORCID,Dong Haoyu12ORCID,Yang Chao12ORCID,Liang Xi12ORCID,Li Xing12ORCID,Yang Jia-Yue12ORCID,Liu Linhua12ORCID

Affiliation:

1. School of Energy and Power Engineering, Shandong University 1 , Jinan 250061, China

2. Optics and Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University 2 , Qingdao 266237, China

Abstract

β-Ga2O3 is a new generation of semiconductor material with a wide bandgap of 4.9 eV. However, the β-Ga2O3 devices inevitably produce defects within them after irradiation, leading to changes in their thermal conductivities. At present, the effect of radiation-damage-induced defects on thermal conductivity of β-Ga2O3 has not been carried out. Herein, we have employed molecular dynamics simulations to investigate the impact of defects on the thermal transport of β-Ga2O3, and the obtained thermal conductivity of non-defect β-Ga2O3 is in good agreement with recent reports. Our findings indicate that the thermal conductivity of β-Ga2O3 at room temperature exhibits a consistent decrease with an increase in the concentration of Ga vacancies, but shows a decreasing and then increasing trend as the number of O vacancies increases. In addition, doping/alloying is found to improve the irradiation resistance of β-Ga2O3 based on reported defect formation energy calculations, so the mechanism of alloying effect on the thermal conductivity is deeply analyzed through first-principles calculations. Moreover, the lattice thermal conductivities of ordered InGaO3 and BGaO3 alloys are predicted by solving the phonon Boltzmann transport equation. The obtained results that κ(Ga2O3) = κ(BGaO3) > κ(InGaO3) are attributed to the combined effect of volume, specific heat capacity, group velocity, and phonon lifetime of the three materials. This work can help to disclose the radiation damage influence on thermal properties of β-Ga2O3 semiconductors.

Publisher

American Vacuum Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3