Radiation damage effects on electronic and optical properties of β-Ga2O3 from first-principles

Author:

Zhang Xiaoning12ORCID,Liang Xi12ORCID,Li Xing12ORCID,Li Yuan3,Yang Jia-Yue12ORCID,Liu Linhua12ORCID

Affiliation:

1. School of Energy and Power Engineering, Shandong University 1 , Jinan 250061, China

2. Optics and Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University 2 , Qingdao 266237, China

3. The State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University 3 , Xi’an 710071, China

Abstract

β-Ga2O3 with an ultra-wide bandgap demonstrates great promise in applications of space missions as power electronics and solar-blind photodetector. Unraveling the radiation damage effects on its material properties is of crucial importance, especially for improving the radiation tolerance of Ga2O3-based devices. Herein, we evaluate the formation energy of gallium and oxygen vacancy defects and comprehensively investigate their influence on the electronic and optical properties of β-Ga2O3 using first-principles calculations. Ga vacancies act as deep acceptors and produce p-type defects in β-Ga2O3, while the defective Ga2O3 with O vacancies exhibits the n-type characteristics. A semimetal characteristic is observed in the defective Ga2O3 with Ga vacancies, and an apparent optical absorption peak in the infrared spectral range emerges. Moreover, the self-compensation effect emerges when β-Ga2O3 contains both Ga vacancies and O vacancies, leading to the reduced absorption peak. The doping effect on the defect formation energy of β-Ga2O3 is also investigated, and Ga vacancies are found to be easily formed in the case of In doped β-Ga2O3 (InGa2O3) compared to the undoped β-Ga2O3, while O vacancies are much harder to form. This work provides insights into how gallium and oxygen vacancy defects alter electronic and optical properties of β-Ga2O3, seeking to strengthen its radiation tolerance.

Funder

National Natural Science Foundation of China

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3