Aminosilane small molecule inhibitors for area-selective deposition: Study of substrate-inhibitor interfacial interactions

Author:

Van Dongen Kaat12ORCID,Nye Rachel A.123ORCID,Clerix Jan-Willem J.12ORCID,Sixt Claudia12,De Simone Danilo2ORCID,Delabie Annelies12ORCID

Affiliation:

1. Department of Chemistry, University of Leuven 1 , Leuven B-3001, Belgium

2. IMEC 2 , Leuven B-3001, Belgium

3. Department of Chemical and Biomolecular Engineering, North Carolina State University 3 , Raleigh, North Carolina 27695

Abstract

Area-selective atomic layer deposition (AS-ALD) is a coveted method for the fabrication of next-generation nano-electronic devices, as it can complement lithography and improve alignment through atomic scale control. Selective reactions of small molecule inhibitors (SMIs) can be used to deactivate growth on specific surface areas and as such enable AS-ALD. To investigate new applications of ASD, we need insight into the reactions of SMIs with a broad range of technology relevant materials. This paper investigates the reactions of aminosilane SMIs with a broad range of oxide surfaces and the impact on subsequent atomic layer deposition (ALD). We compare the reactions of two aminosilane SMIs, namely, dimethylamino-trimethylsilane (DMA-TMS) and hexamethyldisilazane (HMDS), with a hydroxylated SiO2 surface and the impact on subsequent ALD processes. The DMA-TMS reaction saturates faster than the HMDS reaction and forms a dense trimethylsilyl (TMS) layer with a higher TMS surface concentration. The higher TMS surface concentration yields better inhibition and higher selectivity during subsequent TiO2 ALD. We show that a wide range of surfaces, i.e., MgO, HfO2, ZrO2, Al2O3, TiO2 (TiN/TiOx), SiO2, SnO2, MoOx, and WO3 remain reactive after DMA-TMS exposure for conditions where SiO2 is passivated, indicating that DMA-TMS can enable AS-ALD on these surfaces with respect to SiO2. On these surfaces, DMA-TMS forms residual TMS and/or SiOxCyHz surface species that do not markedly inhibit ALD but may affect interface purity. Surfaces with lower, similar, and higher surface acidity than SiO2 all show less reactivity toward DMA-TMS, suggesting that surface acidity is not the only factor affecting the substrate-inhibitor interaction. Our study also compares a hybrid inorganic-organic SnOxCyHz and inorganic SnO2 material in view of their relevance as resist for extreme ultraviolet lithography. DMA-TMS can enable selective infiltration in SnOxCyHz, as opposed to selective deposition on SnO2, indicating tunable reactivity by bulk and surface composition. These insights into the reactivity of aminosilane SMIs may aid the design of new area-selective deposition processes, broaden the material space, and enable new applications.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3