Exploring Seasonal and Circadian Rhythms in Structural Traits of Field Maize from LiDAR Time Series

Author:

Jin Shichao1234ORCID,Su Yanjun34,Zhang Yongguang2ORCID,Song Shilin34,Li Qing5,Liu Zhonghua34,Ma Qin6,Ge Yan1,Liu LingLi34,Ding Yanfeng1,Baret Frédéric17ORCID,Guo Qinghua8

Affiliation:

1. Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Centre for Modern Crop Production Co-Sponsored by Province and Ministry, Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China

2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China

3. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China

6. Department of Forestry, Mississippi State University, Mississippi State 39759, USA

7. Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1114 Domaine Saint-Paul, Avignon Cedex 84914, France

8. Department of Ecology, College of Environmental Sciences, and Key Laboratory of Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China

Abstract

Plant growth rhythm in structural traits is important for better understanding plant response to the ever-changing environment. Terrestrial laser scanning (TLS) is a well-suited tool to study structural rhythm under field conditions. Recent studies have used TLS to describe the structural rhythm of trees, but no consistent patterns have been drawn. Meanwhile, whether TLS can capture structural rhythm in crops is unclear. Here, we aim to explore the seasonal and circadian rhythms in maize structural traits at both the plant and leaf levels from time-series TLS. The seasonal rhythm was studied using TLS data collected at four key growth periods, including jointing, bell-mouthed, heading, and maturity periods. Circadian rhythms were explored by using TLS data acquired around every 2 hours in a whole day under standard and cold stress conditions. Results showed that TLS can quantify the seasonal and circadian rhythm in structural traits at both plant and leaf levels. (1) Leaf inclination angle decreased significantly between the jointing stage and bell-mouthed stage. Leaf azimuth was stable after the jointing stage. (2) Some individual-level structural rhythms (e.g., azimuth and projected leaf area/PLA) were consistent with leaf-level structural rhythms. (3) The circadian rhythms of some traits (e.g., PLA) were not consistent under standard and cold stress conditions. (4) Environmental factors showed better correlations with leaf traits under cold stress than standard conditions. Temperature was the most important factor that significantly correlated with all leaf traits except leaf azimuth. This study highlights the potential of time-series TLS in studying outdoor agricultural chronobiology.

Funder

Beijing Municipal Science and Technology Project

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Literature and Literary Theory,Music,Agronomy and Crop Science,Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3