Field-measured canopy height may not be as accurate and heritable as believed: evidence from advanced 3D sensing

Author:

Zang Jingrong,Jin Shichao,Zhang Songyin,Li Qing,Mu Yue,Li Ziyu,Li Shaochen,Wang Xiao,Su Yanjun,Jiang Dong

Abstract

AbstractCanopy height (CH) is an important trait for crop breeding and production. The rapid development of 3D sensing technologies shed new light on high-throughput height measurement. However, a systematic comparison of the accuracy and heritability of different 3D sensing technologies is seriously lacking. Moreover, it is questionable whether the field-measured height is as reliable as believed. This study uncovered these issues by comparing traditional height measurement with four advanced 3D sensing technologies, including terrestrial laser scanning (TLS), backpack laser scanning (BLS), gantry laser scanning (GLS), and digital aerial photogrammetry (DAP). A total of 1920 plots covering 120 varieties were selected for comparison. Cross-comparisons of different data sources were performed to evaluate their performances in CH estimation concerning different CH, leaf area index (LAI), and growth stage (GS) groups. Results showed that 1) All 3D sensing data sources had high correlations with field measurement (r > 0.82), while the correlations between different 3D sensing data sources were even better (r > 0.87). 2) The prediction accuracy between different data sources decreased in subgroups of CH, LAI, and GS. 3) Canopy height showed high heritability from all datasets, and 3D sensing datasets had even higher heritability (H2 = 0.79–0.89) than FM (field measurement) (H2 = 0.77). Finally, outliers of different datasets are analyzed. The results provide novel insights into different methods for canopy height measurement that may ensure the high-quality application of this important trait.

Funder

National Natural Science Foundation of China

Jiangsu Agricultural Science and Technology Innovation Fund

JBGS Project of Seed Industry Revitalization in Jiangsu Province

High-Level Personnel Project of Jiangsu Province

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3