Point Cloud Registration Based on Fast Point Feature Histogram Descriptors for 3D Reconstruction of Trees

Author:

Peng Yeping12,Lin Shengdong12,Wu Hongkun3,Cao Guangzhong12ORCID

Affiliation:

1. College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China

2. Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots, Shenzhen University, Shenzhen 518060, China

3. School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Three-dimensional (3D) reconstruction is an essential technique to visualize and monitor the growth of agricultural and forestry plants. However, inspecting tall plants (trees) remains a challenging task for single-camera systems. A combination of low-altitude remote sensing (an unmanned aerial vehicle) and a terrestrial capture platform (a mobile robot) is suggested to obtain the overall structural features of trees including the trunk and crown. To address the registration problem of the point clouds from different sensors, a registration method based on a fast point feature histogram (FPFH) is proposed to align the tree point clouds captured by terrestrial and airborne sensors. Normal vectors are extracted to define a Darboux coordinate frame whereby FPFH is calculated. The initial correspondences of point cloud pairs are calculated according to the Bhattacharyya distance. Reliable matching point pairs are then selected via random sample consensus. Finally, the 3D transformation is solved by singular value decomposition. For verification, experiments are conducted with real-world data. In the registration experiment on noisy and partial data, the root-mean-square error of the proposed method is 0.35% and 1.18% of SAC-IA and SAC-IA + ICP, respectively. The proposed method is useful for the extraction, monitoring, and analysis of plant phenotypes.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Shenzhen Municipality

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3